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Abstract

Biological mediation of carbonate dissolution represents a fundamental component of the destructive forces acting on

coral reef ecosystems. Whereas ocean acidification can increase dissolution of carbonate substrates, the combined

impact of ocean acidification and warming on the microbioerosion of coral skeletons remains unknown. Here, we

exposed skeletons of the reef-building corals, Porites cylindrica and Isopora cuneata, to present-day (Control: 400 latm –
24 °C) and future pCO2–temperature scenarios projected for the end of the century (Medium: +230 latm – +2 °C;
High: +610 latm – +4 °C). Skeletons were also subjected to permanent darkness with initial sodium hypochlorite

incubation, and natural light without sodium hypochlorite incubation to isolate the environmental effect of acidic sea-

water (i.e., Ωaragonite <1) from the biological effect of photosynthetic microborers. Our results indicated that skeletal

dissolution is predominantly driven by photosynthetic microborers, as samples held in the dark did not decalcify. In

contrast, dissolution of skeletons exposed to light increased under elevated pCO2–temperature scenarios, with

P. cylindrica experiencing higher dissolution rates per month (89%) than I. cuneata (46%) in the high treatment relative

to control. The effects of future pCO2–temperature scenarios on the structure of endolithic communities were only

identified in P. cylindrica and were mostly associated with a higher abundance of the green algae Ostreobium spp.

Enhanced skeletal dissolution was also associated with increased endolithic biomass and respiration under elevated

pCO2–temperature scenarios. Our results suggest that future projections of ocean acidification and warming will lead to

increased rates of microbioerosion. However, the magnitude of bioerosion responses may depend on the structural prop-

erties of coral skeletons, with a range of implications for reef carbonate losses under warmer and more acidic oceans.
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Introduction

Due to the natural equilibrium between gases in the

atmosphere and ocean, increased atmospheric pCO2

from anthropogenic sources is absorbed by the ocean

surface, decreasing seawater pH, and causing ocean

acidification (Kleypas et al., 2001; Caldeira & Wickett,

2003). This change depletes the concentration of carbon-

ate ions (CO3
2�), lowering the saturation state (Ω) of the

mineral phases of calcium carbonate (Orr et al., 2005),

and reducing the accretion potential of coral reef ecosys-

tems (Kleypas et al., 2001; Hoegh-Guldberg et al., 2007).

The increase in atmospheric pCO2 and other greenhouse

gases has also caused an increase in the sea surface

temperature by 0.4–1.0 °C in the past four decades

(Kleypas et al., 2008). Whereas increasing temperatures

in shallow waters may counteract the effect of ocean

acidification on carbonate saturation states (Andersson

et al., 2008), thermal stress due to ocean warming can

detrimentally affect the health of reef organisms, poten-

tially contributing to coral reef degradation (Hughes

et al., 2003; Hoegh-Guldberg et al., 2007).

Projected increases in seawater (SW) acidity and tem-

perature in the coming decades (Ipcc, 2007) are expected

to reduce calcification (Langdon & Atkinson, 2005;

Jokiel et al., 2008) and increase dissolution (Anthony

et al., 2008; Andersson et al., 2009; Diaz-Pulido et al.,

2012) of corals and crustose coralline algae (CCA). These

changes are likely to further increase bioerosion rates of

reef carbonates (Manzello et al., 2008; Wisshak et al.,

2012), potentially disrupting the balance between

carbonate accumulation and erosion. Tribollet et al.

(2009) demonstrated that increased SW pCO2 enhanced
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dissolution rates of coral carbonates, yet the relative

contributions of different bioerosion processes and how

they may be altered by the combined effect of ocean

acidification and warming are still poorly understood

(Atkinson & Cuet, 2008; Andersson & Gledhill, 2012).

The most important microborers of carbonate skele-

tons are endolithic green and red algae, cyanobacteria,

and fungi (Golubic et al., 1981; Le Campion-Alsumard

et al., 1995). Among these organisms, the green alga

Ostreobium sp. is associated with high rates of bioero-

sion (Le Campion-Alsumard et al., 1995; Tribollet,

2008b). Microbioerosion is most likely caused by chemi-

cal dissolution driven by the metabolic activity of inter-

nal microborers (Garcia-Pichel, 2006). While recent

evidence indicates that the dissolution of Porites sp.

skeletons increases under elevated pCO2 conditions

(Tribollet et al., 2009), little is known about the com-

bined effect of future ocean acidification and warming

projections on the microbioerosion of different sub-

strates. Although the increased dissolution of CCA

under elevated pCO2 and temperature conditions has

been linked to the presence of microborers, such a link

has not been empirically quantified (Martin & Gattuso,

2009; Diaz-Pulido et al., 2012).

In this study we tested the hypothesis that combined

ocean acidification and warming would alter microbioe-

rosion processes on coral skeletons. We did not investi-

gate the individual effect of increased SW pCO2 and

temperature, or the relative contribution of each process

on carbonate bioerosion. Rather, we addressed the ques-

tion of how microbioerosion may respond to future

emission scenarios by the Intergovernmental Panel of

Climate Change (IPCC), as increases in atmospheric

pCO2 concurrently lead to both ocean acidification and

warming (Meehl et al., 2007). Comparing present-day

conditions with two elevated pCO2–temperature scenar-

ios, we explored how skeletons of Porites cylindrica

(branching growth form) and Isopora cuneata (encrusting

growth form) respond to biochemically mediated disso-

lution. The biological effect of photosynthetic microbor-

ers on skeletal dissolution was isolated from the

environmental effect of elevated SW pCO2–temperature

(i.e., dissolution if Ω < 1 as this variable is sensitive to

both pCO2 and temperature). Also, the effects of experi-

mental pCO2–temperature scenarios on biological and

ecological responses of endolithic algae were quantified.

Materials and methods

General protocol and CO2–temperature system

The experiment was conducted during austral spring from

September to November 2010, at Heron Island Research Sta-

tion, southern Great Barrier Reef (GBR; 23°26′S, 151°54′E).

Coral skeletons were exposed to three SW pCO2–temperature

scenarios, offset from seasonally relevant and fluctuating reef

conditions: 1 – Control (+0 latm – +0 °C); 2 – Medium (+230
latm – +2 °C); 3 – High (+610 latm – +4 °C). Offsets for med-

ium and high treatments were based on IPCC scenarios, repre-

senting ‘reduced’ (B2) and ‘business as usual’ (A1FI) fossil

fuel use (Ipcc, 2007).

A pCO2–temperature controlled system was used to treat fil-

tered SW (10 lm) in three large sealed reservoirs (10 kL) before

entering the experimental tanks. Acidification of SW was

achieved by bubbling a fine curtain of CO2 enriched and CO2

depleted air through each reservoir. The CO2–depleted air was

produced by passing compressed air through two desiccant

columns (Model 106-C, W. A. Hammond Drierite, Australia)

filled with soda lime. The CO2 dose was determined by a pCO2

analyzer and controlled by a custom-built software package

(CO2-Pro
TM, Pro-Oceanus Systems Inc. Canada). Temperature

was controlled by three industrial heater-chillers (HWP017-

1BB, Accent Air, Australia). The system allowed SW pCO2 and

temperature to follow seasonally appropriate fluctuations mea-

sured at a reference field site (Harry’s Bommie, Heron Island,

GBR). Field data were continuously recorded by a MAPCO2

system to monitor ocean acidification (PMEL Carbon Program,

NOAA and CSIRO, Australia http://www.pmel.noaa.gov/

co2/story/Heron+Island). The reference averages for SW pCO2

and temperature were 381 latm (� 4.4 SEM) and 24 °C (� 0.1

SEM), providing a near perfect match to the control conditions

(see Table 1). Seawater samples for total alkalinity (AT) analysis

were taken at noon and midnight at the end of the study to

include the periods when the SW alkalinity and pH are likely to

bemost divergent. Seawater samples were analyzed by potenti-

ometric titration (T50 Titrator, Mettler Toledo, Switzerland)

and calibrated using a Dickson standard, with alkalinity repli-

cates within a sample having a maximum error of 3 lmol kg�1

(Dickson et al., 2003). The carbonate chemistry of SWwas calcu-

lated using CO2SYS (Pierrot et al., 2006) with temperature,

pCO2, AT, and salinity (35.8 � 0.2 SEM; n = 10) as the input

parameters, and pH SW scale (kg mol�1), aragonite saturation

state (Ωarag), bicarbonate (HCO3
�), and carbonate (CO3

2�) as
output parameters. Constants were obtained from Mehrbach

et al. (1973) andmodified by Dickson &Millero (1987).

Sample collection and preparation

Samples of Porites cylindrica and Isopora cuneata were collected

from the reef flat and shallow reef crest of Heron Island and

Wistari Reef, respectively. Samples were cut using a diamond

saw to obtain 125 experimental substrates of each coral (I. cune-

ata ca. 3 9 3 cm and P. cylindrica ca. 6 cm long and 3 cm in

diameter). These two common reef-building corals harbor high

abundances of endolithic algae (Fig. S1). Coral tissue was

removed from the skeletons by airbrushing to simulate

recently dead coral substrates while retaining their comple-

ment of endolithic algae (Fine et al., 2005). By removing the

coral tissue, endolithic microborers were subjected to light

environments that mimic natural light intensities (Fine & Loya,

2002) following coral mortality after mass bleaching events, air

exposure at low tide, or corallivory (Baird & Marshall, 2002;

Reyes-Nivia et al., 2004; Hoegh-Guldberg et al., 2005).
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Experimental design

Each pCO2–temperature treatment had five replicate tanks

(15 l plastic aquaria), which received SW from the reservoirs

at a constant flow rate (1 l min�1). Small pumps were placed

in each aquarium to ensure water circulation. Each tank con-

tained seven experimental subsamples of each type of skeleton

(where type is defined by coral source). Samples were

randomized among tanks and treatments to account for vari-

ability in the initial biomass of endolithic algae. Epilithic algae

were removed every 48 h from the samples using a soft tooth-

brush to reduce potential confounding effects caused by turf

growth response and resultant shading under different condi-

tions. Neutral density filters (LEE filter 0.3) covered each tank

to reduce light exposure by 51% without affecting the color

balance of incoming light. Light was measured in the tanks at

10 cm depth, using a LI-192 Underwater Quantum Sensor

(Li-COR), with midday levels ranging from 600 to 1200 lmol

quanta m�2 s�1 depending on cloud cover.

To quantify the environmental effect of SW pCO2–tempera-

ture conditions on skeletal dissolution, four additional tanks

per treatment were maintained constantly in the dark follow-

ing an initial 10 h sample soak in a 10% sodium hypochlorite

solution. This solution was only used on the dark samples to

eliminate all microborers, detected as a loss of pigmentation,

at the start of the experiment and thereby provide an abiotic

skeleton. For these samples, the reestablishment of photosyn-

thetic microborers was inhibited by the perpetual maintenance

in the dark. This procedure, however, could not guarantee the

prevention of the resettlement of heterotrophic microbes over

the experimental process. Dark samples were also cleaned

every 48 h with a soft toothbrush during the experimental

period. Each dark tank contained five samples of each type of

skeleton.

Response variables

To estimate negative or positive change in CaCO3 of the coral

skeletons, a high-precision buoyant weight method was used

(Davies, 1989). Microbioerosion (also referred to as biological

dissolution) and/or calcification were calculated as the per

cent change in buoyant weight of skeletons between the end

(day 60) and beginning (day 0) of the experiment. Monthly

rates of microbioerosion were expressed as changes in buoy-

ant weight normalized to total surface area (mg cm�2

month�1), which was determined using a modified wax dip-

ping method (Holmes, 2008). Changes in buoyant weight

were further converted into rates of dissolved CaCO3 normal-

ized to area (mg cm�2 month�1) using a SW density of

1.024 g cm�3 and coral skeletons microdensity of 2.46 g cm�3

(� 0.05 SEM, n = 15) for P. cylindrica and 2.69 g cm�3 (� 0.01

SEM, n = 15) for I. cuneata. Microdensity was determined by

applying the skeleton density method (Davies, 1989).

To estimate the biomass of endolithic algae in coral skele-

tons, the loss on ignition (LOI) method (Heiri et al., 2001) was

applied. Biomass was calculated as milligrams of endolithic

algae normalized to surface area (mg cm�2). A subset of 45

samples per type of skeleton was used to quantify the biomass

at the end of the study period. Samples were thoroughly

cleaned under a dissecting microscope to ensure only endo-

lithic organisms were preserved (Fig. S1). Skeletons were

dried at 60 °C until they reached constant weight and then

combusted at 550 °C for 4 h to oxidize all organic matter (He-

iri et al., 2001; Cuif et al., 2004). Samples were weighed before

and after combustion using a high-precision balance. Weight

loss after combustion was corrected for each sample to

account for the organic compounds within coral skeletons

(Cuif et al., 1999). A 1% correction factor was used as thermo-

gravimetric analysis (from 20 to 550 °C) showed a total

organic content (intracrystalline) of 1–1.2% for six skeletons of

different coral species (Cuif et al., 2004).

To identify the ecological responses of the endolithic com-

munity, the composition and relative abundance of microbor-

ers were examined by the method of Diaz-Pulido & Mccook

(2002) with the following modifications: Surfaces colonized by

endolithic algae were transversally cut using a diamond saw

to obtain standardized areas of ca. 0.5 9 0.5 cm; and estimates

of the relative abundance of endolithic taxa were determined

by the percent cover in 6 microscopic fields per slide at 409

magnification. Species were identified based on the literature

Table 1 Summary of mean seawater temperature and pCO2 concentration determined for the 8 weeks experimental period, along

with carbonate parameters estimated for three distinct pCO2–temperature scenarios at the end of the experiment. Temperature and

pCO2 are mean values (� SEM) recorded at <30 min intervals over the length of the experiment. Input temperature (T), seawater

pCO2, and total alkalinity (AT) are means (� SEM) of 10 seawater replicates collected at the end of the study. Output pH (seawater

scale kg mol�1), aragonite saturation state (Ωarag), bicarbonate (HCO3
�), and carbonate (CO3

2�) were estimated using the program

CO2SYS (Pierrot et al., 2006).

pCO2–temperature

conditions Seawater carbonate chemistry

8 weeks mean Input parameters Output parameters

Scenarios T (°C) pCO2

(latm)

T (°C) pCO2

(latm)

AT

(lmol kg�1)

pH Ωarag HCO3
�

(lmol kg�1)

CO3
2�

(lmol kg�1)

Control 24.0 � 0.0 401 � 0.8 23.4 � 0.1 391 � 2.2 2239 � 2.7 8.03 � 0.002 3.1 � 0.02 1747 � 1.7 199 � 1.4

Medium 26.0 � 0.1 639 � 1.3 25.6 � 0.1 651 � 8.0 2240 � 2.4 7.84 � 0.005 2.4 � 0.02 1870 � 3.3 150 � 1.3

High 28.0 � 0.1 1012 � 1.7 29.2 � 0.1 1103 � 29.9 2239 � 2.6 7.65 � 0.011 1.8 � 0.04 1960 � 6.3 114 � 2.5
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available (Lukas, 1974; Humm & Wicks, 1980; Le Campion-

Alsumard et al., 1995; Nagarkar, 1998; Tribollet, 2008b) and

prior to the recent identification of cryptic diversity within the

genus Ostreobium (Gutner-Hoch & Fine, 2011). A total of 10

slides per treatment from each skeleton were used for identifi-

cation and abundance estimations.

The rate of dark respiration of the endolithic communities

was measured and related to patterns of microbioerosion. Res-

pirometry assays were conducted for 15 min at 0 lmol quanta

m�2 s�1 following at least 6 h of dark acclimation. Respiration

estimates were conducted on the same subset of samples used

for biomass quantification. Measurements were carried out

using eight recirculating respirometry chambers (140 cm3) fol-

lowing a similar protocol to Crawley et al. (2010). Oxygen

fluxes for each sample were normalized to biomass of endo-

lithic algae (lmol O2 h�1 mg�1).

To explore the variability in pH between interstitial and

bulk SW, pH profiles within P. cylindrica skeletons were con-

ducted using fast-responding pH microsensors and a lab-

based system (pH-500 microsensor, 4-channel Multimeter,

SensorTrace software, Unisense, Denmark). Holes of 5 mm

depth were drilled (3 weeks before profiling) on the skeleton

surface with a 0.5 mm diameter drill bit. A reference electrode

and the pH microsensor (500 lm tip diameter) were con-

nected to a microsensor amplifier coupled to a computer. Cali-

bration was linearly performed using three NIST-certified pH

buffers (Mettler Toledo, Switzerland). Depth profiles of pH

were done under dark and light conditions (900 quanta

m�2 s�1; Ocean light, Aqua Medic, Germany) using a manual

micromanipulator. Measurements were conducted under

control pCO2–temperature conditions at the end of the study.

Data analysis

Two-way nested ANOVAs, using a least-square mean, were

applied to test whether microbioerosion, calcification, and bio-

mass varied among pCO2–temperature scenarios and types of

skeleton. pCO2–temperature scenario and type of skeleton

were treated as fixed factors, tanks as random replicates

nested within the pCO2–temperature x type of skeleton inter-

action, and samples were nested within tanks. If a significant

interaction between treatment and type of skeleton was found,

a one-way nested ANOVA was used to test the fixed effect of

pCO2–temperature scenario on the dependent variables for

each type of skeleton. Tanks were again treated as nested rep-

licates with samples being nested within tanks. When no effect

of tanks was identified (P > 0.25) tanks were pooled in a one-

way ANOVA using samples as replicates (Underwood, 1997).

Post hoc pairwise analyses were applied using Tukey’s tests.

The percentage of microbioerosion/calcification was arcsine

transformed whereas biomass was log transformed. ANOVA’s

assumptions of variance homogeneity and normality were

tested using Levene’s and K-S, respectively (Sokal & Rohlf,

1995). Analyses were done using STATISTICA 10.

Multivariate analyses were applied to examine differences

in community structure of endolithic algae among pCO2–

temperature scenarios. The percentage of relative abundance

was arcsine transformed. The Bray–Curtis similarity measure

was used to produce a resemblance matrix (Clarke, 1993;

Anderson et al., 2008). A one-way nested PERMANOVA was

applied with pCO2–temperature scenario as a fixed factor and

tanks as replicates. Samples were nested within tanks. As no

tank effects were identified in P. cylindrica skeletons, tanks

were pooled to perform a one-way PERMANOVA. Values of

the pseudo-F statistic were computed using 9999 permuta-

tions, and pairwise comparisons were then applied. Ordina-

tion by principal coordinates analysis (PCO) was used to

spatially visualize dissimilarities in endolithic community

structure among pCO2–temperature scenarios. Potential indi-

cator species or species assemblages characterizing the

observed groups were determined by Spearman correlations

(vector lengths >0.5) and then superimposed on the ordination

space. Analyses were done using PERMANOVA+ for PRIMER

v6. To further explore the effects of pCO2–temperature scenar-

ios on the relative abundance of dominant endolithic species,

a one-way ANOVA was used on selected taxa.

Regression analyses with all data and by individual treat-

mentswere applied using a least-square approach to explore the

relationship between microbioerosion and: (i) biomass of endo-

lithic algae, (ii) dark respiration rates per unit biomass, and (iii)

relative abundance of Ostreobium spp. Data were checked for

leverage points to avoid large effects on regression coefficients.

Results

Changes in skeletal weight

All coral skeletons harboring endolithic algae (under

natural day–night cycles and not pretreated with

sodium hypochlorite) lost CaCO3 (Fig. 1a). Total micro-

bioerosion (% reduction over 2 months) of both I. cune-

ata and P. cylindrica skeletons increased under the two

elevated pCO2–temperature scenarios (Fig. 1a, Table 2),

and the type of skeleton and scenario had a significant

effect on microbioerosion responses (Table 2). Carbon-

ate microbioerosion on I. cuneata substrates significantly

increased in the medium relative to control treatment,

but showed no further increase in the high pCO2

–temperature treatment (Table 2). Microbioerosion on

P. cylindrica steadily increased from control to high

pCO2–temperature scenario (Table 2). High variability

in the microbioerosion of both types of coral skeletons

was observed between tanks under the same pCO2–
temperature scenario (Table 2).

Skeletons without photosynthetic endolithic algae

(under full dark conditions and pretreated with sodium

hypochlorite) showed no signs of CaCO3 dissolution,

with a positive increase in buoyant weight observed

at the end of the experiment. Net calcification (%

increase over 2 months) was similar between experi-

mental substrates and pCO2–temperature scenarios

(Fig. 1a, Table 2). Again, high variability in the

calcification response of both I. cuneata and P. cylindrica

was observed between tanks within the same pCO2–
temperature scenario (Table 2).

© 2013 Blackwell Publishing Ltd, Global Change Biology, 19, 1919–1929
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Rates of net dissolution by microborers

The rate of skeletal microbioerosion (mg cm�2

month�1 � SEM; n = 25 samples per treatment) in

I. cuneata increased from control (8.04 � 0.71) to

medium (10.65 � 0.85) and high pCO2–temperature

scenarios (11.76 � 0.99). P. cylindrica exhibited even

higher rates of microbioerosion, with a twofold increase

from the control to high treatment (control =
12.67 � 1.26; medium = 17.21 � 1.44; high = 23.96 �
2.12). Net dissolution of I. cuneata (mg
CaCO3 cm�2 month�1 � SEM) increased from 32 to 46%
under both elevated pCO2–temperature scenarios relative to
the control (control = 12.98 � 1.15; medium = 17.20 �
1.37; high =18.99� 1.60), whereas dissolution of P. cylindri-
ca increased 89% in the highest scenario (control = 21.
70 � 2.15; medium= 29.49 � 2.46; high = 41.05 � 3.63).

Biomass of endolithic algae

The biomass of endolithic algae (mg cm�2) significantly

increased in the high pCO2–temperature treatment rela-

tive to control and medium treatments (Fig. 1b,

Table 2). The type of skeleton also influenced the

biomass of endolithic algae (Table 2), with significantly

higher biomass in I. cuneata compared with P. cylindrica

substrates (Fig. 1b).

Community structure of endolithic algae

The filamentous algae Ostreobium spp. (O. quekettii and

O. constrictum) and the cyanobacterium Plectonema

terebrans accounted for 65–90% of the total abundance

across the treatments (Fig. 2). Less abundant species

included two cyanobacteria (Hyella sp., and Mastigocole-

us testarum), two unidentified coccoid species, and three

epilithic cyanobacteria (Oscillatoria spp., Spirulina sp.,

and an unidentified encapsulated-like species labeled

as Morpho1; Fig. 2). Fungi were rare from the endo-

lithic communities and were included in the category

‘Other’ (Fig. 2).

The endolithic community structure in P. cylindrica

skeletons significantly varied among pCO2–temperature

scenarios (PERMANOVA: F2,25 = 4.381; P < 0.0001;

Fig. 2). Pair-wise comparisons revealed differences

among all treatments. The first two axes of PCO analy-

sis explained 67% of the variance in endolithic algae

distribution. Hyella sp., Coccoid1, and Morpho1 were

(a)

(b)

Fig. 1 Effects of pCO2–temperature scenarios on (a) microbioerosion/calcification (%) and (b) biomass of endolithic algae (mg cm�2) in

skeletons of Isopora cuneata and Porites cylindrica. Data correspond to means � SEM. Calcification data correspond to skeletons exposed

to full dark conditions (n = 20 samples for each treatment). Microbioerosion data correspond to samples under natural light (n = 25

samples for each treatment) as well as biomass of endolithic algae (n = 15 samples for each treatment). pCO2–temperature treatments

correspond to present-day conditions (Control: ca. 400 latm – 24 °C) and two IPCC projected scenarios (Medium/B2: +230 latm � +2 °C

and High/A1FI: +610 latm – + 4 °C).
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more abundant under control conditions (PCO1;

Fig. 3). Ostreobium spp. was dominant in most high

pCO2–temperature treatments and in few medium sam-

ples (PCO2; Fig. 3), and significantly increased in the

high pCO2–temperature treatment relative to control

(ANOVA: F2,29 = 3.498; P < 0.05; Fig. 2). In contrast, the

structure of the endolithic algal community of I. cuneata

skeletons was not significantly different among pCO2–
temperature scenarios (PERMANOVA: F2,15 = 1.684;

P = 0.15). However, the dominance of P. terebrans in

I. cuneata skeletons significantly increased under the

two elevated pCO2–temperature scenarios (ANOVA:

F2,29 = 6.375; P < 0.05). The first two axes of PCO analy-

sis explained about 87% of the variance in endolithic

algae distribution. Although two main assemblages

could be distinguished, the distribution pattern showed

high variability among I. cuneata samples within a treat-

ment (Fig. 3).

Explanatory variables

Rates of microbioerosion (mg cm�2 month�1) were

related to the biomass of endolithic algae (mg cm�2) for

both substrates (I. cuneata R2 = 0.3094, P < 0.001 and

P. cylindrica R2 = 0.3560, P < 0.0001; Fig. 4). Individual

regressions showed similar relationships for the

medium and high pCO2–temperature scenarios (I. cune-

ata R2 = 0.4009, P < 0.05 and R2 = 0.3219, P < 0.05,

respectively; P. cylindrica R2 = 0.2904, P < 0.05 and

R2 = 0.4790, P < 0.05, respectively). Rates of microbioe-

rosion were also proportionally related to the rates of

dark respiration (lmol O2 h�1 mg�1) for P. cylindrica

(R2 = 0.2529, P < 0.001; Fig. 4), particularly in the

medium treatment (R2 = 0.6528, P < 0.001). Profiles of

pH within this coral skeleton revealed decreases in pH

(7.8–7.3 with increasing depth into the skeleton) relative

to the control bulk water (8.1) during dark respiration

(Fig. 5). The percentage of microbioerosion was also

related to the relative abundance of Ostreobium spp. for

P. cylindrica (R2 = 0.3869, P < 0.05).

Discussion

Changes in skeletal weight

Here, we demonstrated that dissolution of coral skele-

tons, driven predominantly by photosynthetic micro-

borers, increased under combined ocean acidification

Table 2 Two-way nested ANOVA testing the effects of pCO2–temperature scenarios and coral skeletons (Isopora cuneata and Porites

cylindrica) on microbioerosion, calcification, and biomass of endolithic algae. A one-way ANOVA was also applied to test the effect of

pCO2–temperature scenarios on microbioerosion for each coral skeleton. Control pCO2–temperature = C; Medium pCO2–tempera-

ture = M; High pCO2–temperature = H; I. cuneata = IC; P. cylindrica = PC.

Source of variation df MS F P

Post hoc

Tukey

Microbioerosion

Scenario 2 213.5 12.7 <0.001
Skeleton 1 1964.5 117.3 <0.001
Scenario 9 Skeleton 2 66.94 3.9 0.031

Tank (Scenario 9 Skeleton) 24 16.77 1.6 0.037

Error 118 10.01

I. cuneata

Scenario 2 30.17 6.26 0.003 M > C; H > C

Error 70 4.81

P. cylindrica

Scenario 2 257.60 14.87 <0.001 H > M > C

Error 72 17.31

Calcification

Scenario 2 2.7 0.03 0.962

Skeleton 1 40.0 0.56 0.462

Scenario 9 Skeleton 2 2.9 0.04 0.960

Tank (Scenario 9 Skeleton) 18 72.4 14.99 <0.001
Error 88 4.8

Biomass

Scenario 2 0.08 8.11 0.002 H > C; H > M

Skeleton 1 0.32 30.76 <0.001 IC > PC

Scenario 9 Skeleton 2 0.00 0.80 0.462

Tank (Scenario 9 Skeleton) 24 0.01 1.64 0.062

Error 58 0.00
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and warming scenarios. Furthermore, dissolution var-

ied with the pCO2–temperature scenario and the iden-

tity of the coral substrate. This study therefore extends

the finding of Tribollet et al. (2009) where higher disso-

lution rates for the skeletons of Porites lobata were

observed under ocean acidification. In our experiment,

skeletons of P. cylindrica were more susceptible to bio-

logically mediated dissolution than the skeletons of

I. cuneata, at least when acidification and warming are

combined. This suggests that the skeletal structure of

corals (e.g., microskeletal architecture, porosity, den-

sity, mineralogy) plays an important role in determin-

ing the magnitude of the effects of pCO2–temperature

scenarios on carbonate dissolution. Our interpretation

is supported by other studies that demonstrate how the

microarchitecture of a range of experimental substrates

(e.g., coral, calcite crystals, and mollusk shells) exerts a

significant control on the boring abilities of endolithic

microborers (Golubic et al., 1975; Kiene et al., 1995;

Perry, 1998). As coral carbonates are dominant in most

coral reefs and particularly susceptible to microbioero-

sion (Le Campion-Alsumard et al., 1995; Perry, 1998;

Tribollet, 2008a), increased dissolution of coral skele-

tons under elevated pCO2–temperature scenarios may

alter bioerosional processes, potentially disrupting the

carbonate balance in coral reef ecosystems.

The comparison of experimental substrates exposed

to dark vs. light conditions suggests that the processes

driving dissolution of coral skeletons are predomi-

nantly mediated by endolithic algae and not by the sat-

uration state of seawater with respect to aragonite

(Ωarag) applied in this study. Skeletons exposed to full

dark (i.e., without endolithic algae) and elevated pCO2–
temperature scenarios gained weight, indicating that

the lowered Ωarag of bulk SW in our study did not con-

tribute to the dissolution of calcium carbonate. Micro-

bial mediation of carbonate precipitation has been

previously observed in carbonate sediments (Dupraz

et al., 2009) and this may explain the skeletal calcifica-

tion under dark conditions. A number of bacterially

driven processes (e.g., ammonification, denitrification,

and sulfate reduction) may result in increased alkalinity

and hypersaturation of Ω inside the coral skeletons,

potentially promoting carbonate precipitation (Riding,

2000; Nothdurft et al., 2007). However, understanding

the mechanism by which calcification occurred under

dark conditions is beyond the scope of this study. Our

results therefore suggest that the dissolution of coral

skeletons was predominantly mediated by the

responses of photosynthetic microborers under a range

of pCO2–temperature scenarios.

The role of endolithic microborers in dissolution processes

Projected ocean acidification and warming scenarios

appear to favor biomass accumulation by endolithic

algae. Previous studies have also demonstrated

increased growth of these organisms under elevated

pCO2 and/or temperature conditions (Fine & Loya,

2002; Tribollet et al., 2009; Diaz-Pulido et al., 2012).

Importantly, we found that increased biomass of micro-

borers partially explained the enhanced dissolution rates

of coral skeletons under elevated pCO2–temperature

scenarios. A similar relationship was observed for the

dissolution of coralline algae under the interaction of

high pCO2 and temperature levels (Diaz-Pulido et al.,

2012). Growing evidence suggests that projected acidifi-

cation and warming scenarios stimulate the biomass of

microborers, which in turn increases the dissolution of

reef carbonate substrates. Corals and coralline algae are

common substrates for endolithic microborers (sensu

Golubic et al., 1981). Both are major reef calcifiers and

are predicted to experience high mortality under ocean

I. cuneata

Fig. 2 Relative abundance (%) of endolithic algae and epilithic

cyanobacteria that inhabited recently dead coral skeletons of

Isopora cuneata and Porites cylindrica following an 8 weeks colo-

nization period under three CO2–temperature scenarios. Data

correspond to means � SEM (n = 10 slides per treatment).

pCO2–temperature treatments correspond to present-day condi-

tions (Control: ca. 400 latm – 24 °C) and two IPCC projected

scenarios (Medium/B2: +230 latm – +2 °C and High/A1FI:

+610 latm – +4 °C).
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acidification and/or warming (Baird & Marshall, 2002;

Anthony et al., 2008; Diaz-Pulido et al., 2012). Therefore,

an increase in the biomass of endolithic algae is likely to

lead to significant bioerosion within coral reef frame-

works.

Dark respiration by endolithic algae appears to be

another important factor associated with the microbioe-

rosion of the experimental coral skeletons. Decreases in

interstitial Ωarag due to the metabolic activity of

microbes and boring endoliths may create corrosive

conditions that cause skeletal dissolution especially at

night (Walter et al., 1993; Andersson et al., 2007; Tribol-

let, 2008b). In support of this, we observed significant

decreases in the interstitial pH under control condi-

tions, particularly in the dark, with increasing depth

into the coral skeleton (e.g., interstitial pH = 7.3 vs.

bulk water pH = 8.1; see Fig. 5). Although more repli-

cation is certainly required, the obtained data suggest

that even more significant decreases in pH may be

achieved when the skeletons are surrounded by further

acidified bulk seawater (Kleypas et al., 2006; Andersson

& Gledhill, 2012). More importantly, the potential for

reducing the pH below 7.3 could be greatly enhanced

under elevated pCO2–temperature scenarios by the

observed increases in both endolithic biomass and dark

respiration normalized to biomass. These compounding

factors along with the persistent dissolution abil-

ity of microborers via acid-generating metabolism

(i.e., dark dependent) and Ca2+ uptake (i.e., light

dependent) (Garcia-Pichel et al., 2010; Ramirez-Reinat

& Garcia-Pichel, 2012), suggest a widespread increase

in the dissolution rates of reef carbonates under ele-

vated pCO2–temperature scenarios.

It is not totally clear how changes in the structure of

the endolithic community may explain the dissolution

responses of reef carbonate substrates. However,

changes in the abundance of the filamentous algae

Ostreobium spp., rather than cyanobacteria, appeared

to influence the dissolution of particular coral skele-

tons under elevated pCO2–temperature scenarios.

Other studies have similarly recognized that Ostreobi-

um sp. is responsible for most of the dissolution of

coral substrates under natural and acidified conditions

(Chazottes et al., 2002; Tribollet, 2008b; Tribollet et al.,

2009). This alga is the most common endolithic micro-

borer, inhabiting about 85% of coral species over a

wide geographic range (Lukas, 1974; Vogel et al., 2000;

F€orsterra & H€aeussermann, 2008). Its extraordinary

ability to cope with low-light environments (Le Cam-

pion-Alsumard et al., 1995; Magnusson et al., 2007)

allows Ostreobium spp. to penetrate deeper into car-

bonate substrates (Tribollet, 2008b; Tribollet et al.,

2009) and dominate reef environments from 1 to 275 m

depth (Kiene et al., 1995; Chazottes et al., 2009). Given

these physiological traits and the enhanced abundance

of Ostreobium spp. under elevated pCO2–temperature

scenarios, we suggest this alga could accelerate disso-

lution of carbonates in a wide range of reef environ-

ments. Experimental studies simulating climate change

scenarios and different light conditions are needed to
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Fig. 3 Principal coordinates ordination (PCO) of the response of endolithic community to three pCO2–temperature scenarios (Con-

trol = circles; Medium = squares; High = triangles) in coral skeletons of Isopora cuneata and Porites cylindrica. pCO2–temperature treat-

ments correspond to present-day conditions (Control: ca. 400 latm – 24 °C) and two IPCC projected scenarios (Medium/B2 scenario:

+230 latm – +2 °C and High/A1FI: +610 latm – +4 °C). High percentages of the explained variance by the two PCO axes indicate good

two-dimensional ordination. Spearman correlation coefficients for the taxa that best correlated (only R > 0.5 is shown) with the two

axes are shown as vector overlays (circle indicating a radius of 1).

© 2013 Blackwell Publishing Ltd, Global Change Biology, 19, 1919–1929

1926 C. REYES-NIVIA et al.



understand how the boring abilities of endolithic

species may be altered across the turbidity and/or

bathymetric range.

By using combined pCO2–temperature scenarios based

on IPCC projections it was not possible to identify

whether observed responses were the result of SW pCO2,

temperature, or whether their interaction is antagonistic

or synergistic. A factorial design is clearly required to

distinguish the role of each climate-related factor on the

biological and physiological responses of endolithic

algae. This, however, was not the aim of this study.

Conclusions

Our research demonstrated that endolithic microborers

play a major role in mediating the dissolution of coral

skeletons under projected ocean acidification and

warming scenarios. The enhanced dissolution of coral

skeletons by photosynthetic microborers under ele-

vated pCO2–temperature conditions is likely to be more

variable than previously predicted, as particular coral

skeletons differentially responded to the future scenar-

ios. Nevertheless, the impact of microborers will be

I. cuneata P. cylindrica

Fig. 4 Relationship between microbioerosion of Isopora cuneata and Porites cylindrica skeletons and different variables of the endo-

lithic algae. Both types of skeleton were exposed to three pCO2–temperature scenarios (Control = circles; Medium = squares;

High = triangles). The complete data set is plotted and represented by the solid line. Rates of microbioerosion (mg cm�2 month�1)

vs. biomass of endolithic algae (mg cm�2) for I. cuneata (R2 = 0.3094, P < 0.001) and P. cylindrica (R2 = 0.3560, P < 0.0001). Regres-

sions by treatment were significant in the medium and high scenarios for I. cuneata (R2 = 0.4009, P < 0.05 and R2 = 0.3219, P < 0.05)

and for P. cylindrica (R2 = 0.2904, P < 0.05 and R2 = 0.4790, P < 0.01, respectively). Rates of microbioerosion (mg cm�2 month�1) vs.

rates of dark respiration (lmol O2 h�1 mg�1) for I. cuneata (R2 = 0.0012, P ns) and P. cylindrica (R2 = 0.2529, P < 0.001). Individual

relationships are only significant for P. cylindrica in the medium scenario (R2 = 0.6528, P < 0.001). Microbioerosion (%) vs. relative

abundance (%) of Ostreobium spp. (n = 5 tanks) for I. cuneata (R2 = 0.0696, P ns) and P. cylindrica (R2 = 0.3869, P < 0.05). Individual

regressions were not significant.
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greater for ‘business as usual’, than for ‘reduced’ pCO2

emission scenarios for the temporal period in which the

experiment was performed. Conditions within pro-

jected future oceans appeared to influence the biologi-

cal and ecological responses of endolithic microborers

resulting in increased dissolution of coral skeletons.

This was demonstrated by the enhanced biomass, shifts

in community structure, and increased respiration rates

of endolithic algae under elevated pCO2–temperature

treatments. Together, our results provide insights into

the processes and potential drivers regulating dissolu-

tion and the contribution of coral skeletal microbioero-

sion to net carbonate losses under projected ocean

acidification and warming scenarios.
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